遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法,是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一、进化论知识
作为遗传算法生物背景的介绍,下面内容了解即可:
种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ) :包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉(Crossover) ,基因突变 (Mutation) ,适应度(Fitness)低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二、遗传算法思想
借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码
需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。
选择
选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是\(N\),那么那么一个体\(x_i\)被选中的概率为:
\[P(x_i)=\frac{f(x_i)}{f(x_1)+f(x_2)+...+f(x_N)}=\frac{f(x_i)}{\sum _{k=1}^{N}{f(x_k)}}\]
比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) 。
交叉(Crossover)
2条染色体交换部分基因,来构造下一代的2条新的染色体。最常见的是k-opt 交换,其中k可以是 1,2,3….等等。简称单点交换,两点交换,3点交换等等。例如下面为两点交换:
交叉前:
00000|011100000000|10000
11100|000001111110|00101
交叉后:
00000|000001111110|10000
11100|011100000000|00101
染色体交叉是以一定的概率发生的,这个概率记为Pc 。
变异(Mutation)
在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。从计算机算法角度看:所有的启发式算法无外乎2种手段结合,局域搜索和全域搜索。局域搜索是在邻域范围内找出最优解,对应的是选择算子和交叉算子。如果只有局域搜索的话,就容易陷入局域最优解。算法结果肯定是要找出全域最优解,这就要求跳出局域搜索,就是一次打破常规的突破——就是我们的“变异”算子。变异发生的概率记为Pm 。
内变异:所谓内变异就是在自己内部发生变异。严格来说其实不是一种变异。但是它又是一种比较有效的手段;
外变异:外变异是引入创新,突破传统的质的飞跃, 也是启发算法中所谓的全域搜索。下面是充当前基因中引入外部基因(当前集合的补集)。
例如:
变异前:
000001110000000010000
变异后:
000001110000100010000
适应度函数 ( Fitness Function )
用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。
三、基本遗传算法的伪代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
基本遗传算法伪代码 /* * Pc:交叉发生的概率 * Pm:变异发生的概率 * M:种群规模 * G:终止进化的代数 * Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程 */ 初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop do { 计算种群Pop中每一个体的适应度F(i)。 初始化空种群newPop do { 根据适应度以比例选择算法从种群Pop中选出2个个体 if ( random ( 0 , 1 ) < Pc ) { 对2个个体按交叉概率Pc执行交叉操作 } if ( random ( 0 , 1 ) < Pm ) { 对2个个体按变异概率Pm执行变异操作 } 将2个新个体加入种群newPop中 } until ( M个子代被创建 ) 用newPop取代Pop }until ( 任何染色体得分超过Tf, 或繁殖代数超过G ) |
四、基本遗传算法优化
下面的方法可优化遗传算法的性能。
精英主义(Elitist Strategy)选择
精英主义(Elitist Strategy)选择是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。
插入操作
可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。
参考:
1.博客园·苍梧:遗传算法入门
2.Chinaunix博客·饶超勋:遗传算法(Genetic Algorithm)
除特别注明外,本站所有文章均为交通人原创,转载请注明出处来自http://www.hijtr.com/a-brief-introduction-to-genetic-algorithm/
暂无评论